Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

The Formation Constants of Triiodoand Tetraiodomercurate(II) Ions in Dimethyl Sulfoxide

BY RICHARD J. PETERSON, PETER JAMES LINGANE, AND WARREN L. REYNOLDS

Received July 31, 1969

Although there is qualitative evidence¹⁻¹⁰ for the formation of a number of transition metal complexes in dimethyl sulfoxide (DMSO) solution, there have been only a few quantitative¹¹⁻¹⁴ determinations of such formation constants. In particular, the existence of HgI_3^- and HgI_4^{2-} in DMSO solutions containing mercury(II) iodide and potassium iodide was inferred by Buckingham and Gasser⁹ from conductance and spectrophotometric data. In this note we report the stepwise formation constants of HgI_3^- and HgI_4^{2-} and the molar absorptivities of HgI_2 , HgI_3^- , and HgI_4^{2-} at 286, 304, and 334 nm.

Experimental Section

Reagent grade chemicals and DMSO were used; the DMSO contained less than 0.05% water.

The absorbances of DMSO solutions containing different concentrations of mercury(II) iodide and potassium iodide were measured with a Beckman DU spectrophotometer at 25° . The solutions were prepared by diluting aliquots of HgI₂ and KI solutions and did not contain a third electrolyte to maintain the ionic strength constant.

The stepwise formation constants and the molar absorptivities of all three mercury species were refined simultaneously using Gaussian least-squares procedures.¹⁵ The computations recognized that the errors in the data for a common solution are correlated at the three wavelengths because concentration errors are common;¹⁶ however, neglecting this correlation did not change the values calculated for the parameters significantly.

Results and Discussion

In agreement with Buckingham and Gasser⁹ it was found that spectra of solutions of HgI_2 without added iodide showed a shoulder at 286 nm on an absorption peak which extended into the region cut off by solvent absorption. With decreasing HgI_2 concentration this shoulder shifted to longer wavelengths. This shift

- (2) V. Gutmann and L. Hubner, *ibid.*, 92, 1261 (1961).
- (3) V. Gutmann and O. Bohunovsky, ibid., 99, 751 (1968).
- (4) V. Gutmann and O. Leitmann, *ibid.*, 97, 926 (1966).
 (5) V. Gutmann and H. Bardy, *ibid.*, 99, 763 (1968).
- (6) D. W. Meek, D. K. Straub, and R. S. Drago, J. Am. Chem. Soc., 82, 6013 (1960).
 - (7) T. B. Swanson and V. M. Laurie, J. Phys. Chem., 69, 244 (1965).
 - (8) D. G. Holah and J. P. Fackler, Inorg. Chem., 4, 1721 (1965).
 - (9) A. Buckingham and R. P. H. Gasser, J. Chem. Soc., A, 1964 (1967).
 - (10) F. Gaizer and M. T. Beck, J. Inorg. Nucl. Chem., 29, 21 (1967).
 - (11) G. Wada and W. L. Reynolds, Inorg. Chem., 5, 1354 (1966).
- (12) N. A. Rumbaut and H. L. Peters, Bull. Soc. Chim. Belges, 76, 33 (1967).
- (13) R. Alexander, E. C. F. Ko, Y. C. Mac, and A. J. Parker, J. Am. Chem. Soc., 89, 3703 (1967).
- (14) D. C. Luehrs, R. T. Iwamoto, and J. Kleinberg, Inorg. Chem., 5, 201 (1966).
- (15) P. J. Lingane and Z Z. Hugus, Jr., ibid., in press.

has been attributed⁹ to disproportionation of HgI_2 to HgI^+ and HgI_3^- .

If we assume a limiting equivalent conductance of about 40 for the fully dissociated HgI_{2} ,¹⁶ we estimate from the conductance data of Buckingham and Gasser⁹ that HgI_{2} is only 5% dissociated at the concentrations employed in this study. Consequently, we have neglected the disproportionation in our analysis of the data.

TABLE I
Molar Absorptivities of $Mercurv(II)$ -Iodide
Complexes in DMSO at 25°

		extinction coeff, M^{-1}	cm ⁻¹
Species	286 nm	304 nm	334 nm
HgI_2	$7,140\pm70$	$6,680\pm80$	$2,630\pm50$
HgI₃	$9,680 \pm 7$	$13,700\pm110$	7 , 520 ± 80
$\mathrm{HgI}_{4^{2}}$ -	23 , 400 ± 360	$7,170\pm110$	21 , 700 ± 350

The spectra of HgI_2 solutions with KI:Hg(II) mole ratios in the range of 1–12 showed an increasing absorption maximum at 304 nm attributed⁹ to HgI₃-. At KI:Hg(II) mole ratios greater than approximately 20, the maximum at 304 nm decreased and an absorption maximum at 334 nm appeared which has been attributed⁹ to HgI_4^{2-} . At these mole ratios an isosbestic point was observed at 314 nm which is consistent with the data given in Table II which show that the fraction of HgI₂ present is very small at these KI:Hg(II) mole ratios. The positions of the maxima found for HgI_3^- and HgI_4^{2-} in DMSO were very close to the positions of the maxima attributed to these two ions in acetonitrile, methyl formate, ethyl acetate, dichloromethane, and N,N-dimethylformamide.¹⁷ The existence of the isosbestic point strongly suggests that no polynuclear mercury(II) complexes are formed in the concentration ranges employed. Indeed, Gaizer and Johansson¹⁸ found no evidence of such complexes at much higher mercury(II) concentrations and lower KI:Hg(II) ratios.

The best values obtained for the molar absorptivities are listed in Table I. The best values obtained for the formation constants K_3 and K_4 , defined by eq 1 and 2, are $(5.5 \pm 1.2) \times 10^5 M^{-1}$ and $75.7 \pm 4.0 M^{-1}$, respectively. These values were obtained assuming a spectrophotometric error of 0.005 transmittance unit and a concentration error of 0.5%. Assumption of a

$$K_{3} = \frac{[\mathrm{HgI}_{3}^{-}]}{[\mathrm{HgI}_{2}][1^{-}]} \frac{f_{-}}{f_{0}f_{1}}$$
(1)

$$K_4 = \frac{[\text{HgI}_4^{2-}]}{[\text{HgI}_3^{-}][1^{-}]} \frac{f_{2-}}{f_{-}f_{1-}}$$
(2)

spectrophotometric error of 0.005 absorbance unit and the same concentration error did not result in any significant change in any of the parameters calculated. The error associated with each parameter is the square root of the appropriate diagonal element in the inverse matrix times an internal estimate of the variance of unit weight. For the 115 degrees of freedom the value

- (16) P. G. Sears, G. R. Lester, and L. R. Dawson, J. Phys. Chem., 60, 1433 (1956).
- (17) T. R. Griffiths and M. C. R. Symons, Trans. Faraday Soc., 56, 1752 (1960).
- (18) F. Gaizer and G. Johansson, Acta Chem. Scand., 22, 3013 (1968).

⁽¹⁾ B. Csiszar, V. Gutmann, and E. Wychera, Monatsh. Chem., 98, 12 (1967).

		Table II		
SUMMARY O	F THE MER	CURY(II)-IO	dide Data	IN DMSO ^a

		MOLE FRACTION			EXPERIM	EXPERIMENTAL ABSORBANCES			CALCULATED RESIDUALS		
SOLN	TOTAL IODIDE	HG12	HGIS	HG14	286	304	334 NM	286	304	334	ΝM
11*	7.500E-05	1.000	.000	.ú00	•276	•270	.112	•00B	•020	•014	
21*	7.500E-C3	1.000	.000	.000	•262	•246	.100	006	004	.002	
1	1.000E-04	1.000	.000	.000	•366	.330	.125	•00B	004	006	
16	1.000E-04	1.000	.000	.000	.347	• 325	.132	011	009	.001	
26	1.000E-04	1.000	.000	.000	.351	•317	.122	007	017	009	
2	1.100E-04	.809	•191	.000	.390	.394	167	.CCB	007	-•C11	
27	1.187E-04	•646	.354	.000	.386	•473	.220	016	•014	.002	
3	1.200E-04	•622	.378	.000	•412	•466	.218	.007	001	+.006	
17	1.250E-04	•532	•468	.000	•427	•508	•248	.010	•009	.002	
4	1.300E-04	•445	•554	•000	•439	•548	•274	•011	•018	•007	
12*	1.000E-C4	.405	•595	.000	•335	•419	•210	.01C	•011	•002	
22*	1.000E-04	•405	•595	.000	•311	•410	.215	014	•002	.007	
28	1.374E-04	• 327	•673	.000	•439	•579	.303	004	•007	.007	
5	1.400E-04	.290	•710	.000	•449	•600	•313	.002	•015	•00B	
18	1.500E-04	•174	.826	.001	•471	•632	.338	.009	.006	•004	
29	1.561E-04	•128	•871	.001	•456	∎629	•341	012	013	004	
23*	1.2005-04	•101	•898	.301	•329	• 454	.250	025	034	014	
13*	1.293E-04	•099	•899	.001	•358	• 494	• 271	.004	•005	.007	
19	1.750E-04	•061	•937	.002	•488	•676	• 369	•011	•011	•006	
30	1.7495-04	.061	•937	.002	•462	•657	• 354	015	008	009	
14*	1.500E-04	.044	•953	.003	•367	•512	•283	.007	•009	.007	
24*	1.500E-04	.044	•953	.003	•350	•484	.265	010	-•019	011	
20	2.000E-04	.034	•962	.004	•491	•690	•384	•009	•016	•013	
15*	1•7⊃0E-04	.028	•967	.005	•369	•519	·289	.006	•012	.009	
25*	1.700E-04	• 028	•967	.005	•354	•489	•271	009	018	009	
31	6.000E-04	.004	•960	•036	•516	•661	•396	•008	013	005	
32	1.100E-03	.002	•921	•077	•552	•66°	•430	.016	001	000	
33	1.600E-03	.001	•882	•116	•58J	•548	•454	.017	001	005	
34	2.070E-03	.001	•846	•153	•601	•64°	•483	.012	•003	002	
35	2.570E-03	.001	•810	•189	•628	•632	.510	•014	•007	000	
36	3.590E-03	.000	•744	•255	•639	•591	•550	020	012	007	
37	5.019E-03	.000	•662	•338	•722	•579	•604	.015	•010	-•004	
6	8.500E-03	.000	•511	•489	•834	•531	•736	.015	•005	•013	
38	1.010E-02	•000	•459	•541	•874	•521	•747	•019	•012	013	
7	1.670E-02	.000	•311	•689	•987	•459	.882	050•	-•001	•017	
39	1.760E-02	.000	•300	•700	•989	•462	.859	.025	•005	014	
8	2.530E-02	•000	•214	•786	•979	•423	•960	045	005	•026	
40	2.540E-02	.000	•214	•786	1.008	•443	.921	015	•014	013	
9	3.370E-02	.000	•158	.842	1.028	•402	•990	034	008	.016	
10	3.370E-02	•000	•158	•842	1.006	•404	.995	056	-•006	.021	
41	3.770E-02	.000	•140	•86°	1.075	•408	1.000	.003	.005	.015	
42	5.030E-02	.000	.101	•899	1.108	• 388	1.002	.007	003	013	

^a Data weighted assuming a spectrophotometric error of 0.005 transmittance unit and concentration errors of 0.5%. The Hg(II) concentration is 0.05 mM except where asterisks indicate [Hg(II)] = 0.0375 mM.

TABLE III

	Partial Correlation Coefficients for the Mercury(II)-Iodide System in DMSO ^a										
	K_8	K_{\bullet}	286 nm	€ _{HgI2} 304 nm	334 nm	286 nm	ε _{HgI3} 304 nm	334 nm	286 nm	ε _{Hg} I4 304 nm	334 nm
K_{3}		-0.01	-0.06	-0.13	-0.18	-0.18	-0.42	-0.59	-0.00	-0.00	-0.01
K_4		• • •	-0.00	0.00	-0.00	-0.17	0.28	-0.24	-0.43	0.48	-0.58
$\epsilon_{\mathrm{HgI}_{2}}$ 286 nm			•••	0.09	0.12	-0.25	0.02	0.02	0.00	0.00	0.00
304 nm				• • •	0.37	0.02	-0.20	0.04	0.00	-0.00	0.00
334 nm					•••	0.02	0.05	-0.24	0.00	0.00	0.00
$\epsilon_{\mathrm{HgI}_{3}}$ 286 nm							0.08	0.09	-0.21	0.01	0.02
3 04 nm								0.10	0.04	-0.29	0.04
334 nm									0.02	0.01	-0.23
$\epsilon_{\mathrm{HgI}_{4}}$ 286 mn										0.07	0.06
304 nm											0.08
334 nm									•		

^a Data weighted assuming a spectrophotometric error of 0.005 transmittance unit and a concentration error of 0.5%.

of $(\chi^2/115)$ was equal to 2.7. This minimum is unique within wide variations of the initial estimates for the formation constants and of the initial estimates for the spectra.

The variation of the activity coefficients with changes in the ionic strength was included in the calculations *via* the equation

$$-\log f_i = A z_i^2 \left(\frac{\mu^{1/2}}{1 + \mu^{1/2}} - 0.3 \mu \right)$$
(3)

where the constant A is 1.11 in DMSO at 25° . The

validity of this equation has been reviewed by Davies.¹⁹ Although not tested for DMSO, it was selected because it has no adjustable parameters. For the calculation of the ionic strength, all possible ion pairs were assumed completely dissociated. This is known to be true for KI in DMSO.¹⁶

Activity coefficients were also estimated via the extended Debye–Hückel equation in which the ion-size parameter was varied over wide limits for all species.

(19) C. W. Davies, "Ion Association," Butterworth and Co. Ltd., London, 1962.

In no case are the values of the parameters changed significantly. However, the values of K_3 , K_4 , and the absorptivities of $\text{HgI}_4{}^2$ changed by 10–15% if all activity coefficients were set equal to unity. Since $\chi^2/115$ did not increase appreciably, this suggests that the fit is, statistically, equally good whether or not activity corrections are included. Since the weight of chemical experience requires that the variation of the activity coefficients be included over this ionic strength range (0 < μ < 0.05), we regard the results obtained with the Davies equation as the more accurate.

The distribution of Hg(II) among the three iodide complexes is given in Table II along with the experimental absorbances of the solutions and the calculated residuals. A residual is the amount to be subtracted from the measured absorbance to give agreement with the absorbance calculated from the best values of the equilibrium constants and the molar absorptivities. More than 90% of the calculated absorbances agree with the measured values to within better than 5% over the more than 1000-fold change in ligand concentration.

Examination of the partial correlation coefficients²⁰ indicates that the parameters are not strongly correlated. This is a consequence of the widely separated values of K_3 and K_4 which minimizes the overlap of species as the iodide ion concentration is increased. As may be seen from Table II, 12% of the solutions contain mainly HgI₂, nearly 20% contain over 90%HgI₃⁻, and the solutions at the higher KI concentrations are mainly HgI₄²⁻. Because the parameters are not strongly correlated, the errors quoted above are probably realistic estimates of the 50% confidence intervals for the parameters.

Acknowledgments.—R. J. Peterson wishes to thank the NSF Undergraduate Research Participation Program for its support, and P. J. Lingane wishes to thank the University of Minnesota Computing Center for a grant of computer time.

(20) W. C. Hamilton, "Statistics in Physical Science," The Ronald Press Co., New York, N. Y., 1964, Section 5.9.

Contribution from the Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973

A Potentiometric Study of Cobalt(III) Perchlorate Solutions^{1a}

By Björn Warnqvist^{1b}

Received August 28, 1969

There is some uncertainty, and even controversy,² concerning the species present in acidic cobalt(III)

perchlorate solutions. There seems to be fairly general agreement that solutions of $[Co^{III}] \gtrsim 10^{-2} M$ and $[H^+] < 0.5 M$ contain di- and/or polynuclear hydrolyzed species.³ However, it has also been suggested on the basis of kinetic studies² that a (hydrated) dimer of Co^{III} predominates even in solutions of $[Co^{III}] \lesssim 1 \times 10^{-3} M$ at high acidities.

Also, there is a paucity of standard potential (E°_{Co}) data for the Co^{III}–Co^{II} couple in perchlorate solutions. Two values, at 25° in 4 M HClO₄–1.92 \pm 0.02 V (measured directly)⁴ and 1.95 \pm 0.10 V (indirect estimate)⁵–are the only ones found in the literature.

If cobalt(III) exists in solution in the form of dimeric ions, this should be supported by electromotive force measurements with the (reversible) $Co^{III}-Co^{II}$ redox electrode; the "Nernst slope" would be half of that expected for monomeric cobalt(III) (at constant cobalt(II) concentration).^{6,7}

If both monomeric and dimeric Co^{111} species are present in equilibrium

$$2C_0^{III} \Longrightarrow C_0^{III_2} \tag{1}$$

one has

$$[C_{0^{III}_{2}}][C_{0^{III}}]^{-2} = K_{D}$$
(1a)

Here brackets are used to denote concentrations, and $K_{\rm D}$ is an overall dimerization quotient. If hydrolysis occurs, $K_{\rm D}$ will be a constant at constant $[{\rm H}^+]$ ($\equiv h$). If $K_{\rm D}$ in eq 1 is finite, then the Nernst equation for the emf, E (expressed as a reduction potential), is given by

$$E = E_0 + \frac{RT \ln 10}{F} \log \left\{ \left[(1 + 8K_D [Co^{111}]_T)^{\frac{1}{2}} - 1 \right] / 4K_D [Co^{2+1}] \right\}$$
(2)

where E_0 is a constant, which includes *inter alia* the reference half-cell emf and liquid junction potentials (assumed to be constant); $[Co^{III}]_T$ is the total concentration of Co^{III} ; other symbols have their conventional meaning. For the case of a very high K_D (practically all dimer) eq 2 reduces to

$$E = E_0 + \frac{RT \ln 10}{2F} \log \left([Co^{111}]_T / 2K_D [Co^{2+}]^2 \right) = E_0' + \frac{RT \ln 10}{2F} \log \left([Co^{111}]_T / [Co^{2+}]^2 \right)$$
(2a)

Experimental Section

Cobalt(III) perchlorate solutions in 3 M (Na⁺,H⁺)ClO₄⁻ were prepared by electrolytic oxidation near 0° of cobalt(II) perchlorate which had been prepared from reagent grade cobalt carbonate and perchloric acid. Sodium perchlorate was prepared from chloride-free sodium carbonate and perchloric acid. Water was triply distilled. Other reagents were of reagent grade. The cell used for the emf measurements was

ref electrode | | h M H ⁺, 3 M ClO₄⁻ | | h M H ⁺, 3 M ClO₄⁻, Co¹¹¹, Co²⁺(Ag ⁺) | Au(s)

The reference electrode was a commercial calomel electrode in which the KCl had been replaced with 4.0 M NaCl. An HClO₄-

(7) B. D. Blaustein and J. W. Gryder, J. Am. Chem. Scc., 79, 540 (1957).

^{(1) (}a) Work performed under the auspices of the U. S. Atomic Energy Commission. (b) On leave from the Royal Institute of Technology, Stockholm, Sweden.

⁽²⁾ C. F. Wells, Discussions Faraday Soc., 46, 197 (1968), and references cited therein,

⁽³⁾ L. H. Sutcliffe and J. R. Weber, J. Inorg. Nucl. Chem., 12, 281 (1960).

 ⁽⁴⁾ B. Warnqvist, quoted by H. Diebler and N. Sutin, J. Phys. Chem., 68, 174 (1964); D. H. Huchital, N. Sutin, and B. Warnqvist, Inorg. Chem., 6, 838 (1967).

⁽⁵⁾ D. A. Johnson and A. G. Sharpe, J. Chem. Soc., 3490 (1964).

⁽⁶⁾ A. Ogg, Z. Physik. Chem., 27, 285 (1898).